

Building Interactive
Dashboards with Shiny

Sergio Morales E.

Subtitle

Wait! Before we begin:
Find this presentation at:

fireblend.com/shiny_talk.pdf

...and all code samples at:
github.com/fireblend/shiny_talk

Subtitle

What is Shiny?

“R package that makes it easy to build
interactive web apps based on data.”

A Super-Quick R Primer

- R: Download at https://cran.r-project.org/

- RStudio: Download at https://rstudio.com/

- Functional programming

- <- for variable assignment

- 1-indexed data structures

- Wanna learn? https://r4ds.had.co.nz/

Shiny Quick Start

Install, load and run:

install.packages("shiny")

library(shiny)

runExample("01_hello")

(There are 11 of these!)

Let’s see what one
of these looks like!

fireblend.shinyapps.io/ejemplo

The Structure of a Shiny App

The UI Object

Controls the layout and
appearance of your app

The Server Function

Defines the logic and
interactivity mappings

Code Skeleton

library(shiny)

ui <- ...

server <- ...

shinyApp(ui = ui, server = server)

Building a User Interface

- Start by invoking the fluidPage function, a generic
responsive layout.

- Use this as a container for other components.

- The function’s nesting structure mirrors the visual
hierarchy in the resulting UI.

What will this look like?

ui <- fluidPage(

 titlePanel("Hello World!"),

 sidebarLayout(position = "right",

 sidebarPanel("This is a side panel"),

 mainPanel("This is a main panel!")

)
)

Some Layout and
Higher-Level Hierarchy Components

- sidebarLayout() for side + main layout.

- fluidRow() + column() for grid-based layouts.

- tabsetPanel() + tabPanel() for tab-based UI.

- navlistPanel() for navigation lists.

- Plenty others!

Adding some style

- Most HTML tags have an analogous Shiny function you
can wrap text with (p(), hX(), strong(), img(), etc).

- Shiny’s visual style is entirely based on Bootstrap, you
can specify alternate themes (css files) using the theme
parameter for fluidPage().

Example time!

fireblend.shinyapps.io/ejemplo2

Interactive Components/Widgets
There’s a whole lot of ‘em!

- actionButton
- radioButtons
- checkboxInput
- dateInput
- fileInput
- numericInput
- sliderInput
- selectInput
- etc…

Check out http://shiny.rstudio.com/gallery/widget-gallery.html

Adding Reactive Output

2 Simple steps:

- Declare an input object and an output object in the
layout. This can be text, images, tables, dataframes,
raw HTML, etc…

- Specify how to display the output in the server
function, and map it to an interactive widget.

Retrieving a widget’s value

All widgets follow the same behavior for value retrieval:

- Must have an id to be referenced on server function
- id is used to retrieve a value array
- Remember, arrays are 1-indexed!

A Basic Interactive App

Layout Function:

ui <- fluidPage(

 titlePanel("Example"),
 sidebarLayout(

 sidebarPanel(
 selectInput("var",

 label = "Choose an option",
 choices = c("Option A", "Option B")

)
)

 mainPanel(
 textOutput("selected_var")
)
)
)

Server Function:

server <- function(input, output) {

 output$selected_var <- renderText({
 paste("You chose: ", input$var)
 })

}

When application is first executed

server <- function(input, output) {

 Everytime a user visits the application

 output$selected_var <- renderText({

 Everytime a widget triggers an output update

 paste("You chose: ", input$var)

 })

}

Code Execution Behavior:
What executes when?

Adding Visualizations

Most R visualization packages are compatible with
Shiny: ggplot2, lattice, leaflet, etc.

Just plug the generation call into the server function!

server <- function(input, output) {
 output$plot_points <- renderPlot({
 ggplot(data, aes(x = input$var_1, y = input$var_2)) +
 geom_point(colour = "red")
 },
 height = 400, width = 600)
}

Reactive Expressions: Caching Data

When working with non-static data, we should limit the
amount of times it is loaded.

We can establish reactive expressions that cache data
until their contents become outdated due to widget
interaction.

For this, we declare a reactive block within our server.

Reactive Expressions

server <- function(input, output) {

 data <- reactive({
 begin = input$begin_date
 end = input$end_date

<...retrieve data...>
 })

 output$plot_points <- renderPlot({
 ggplot(data(), aes(x=input$v1, y=input$v2))+
 geom_point(colour = "red")
 },
 height = 400, width = 600)

}

Reactive block only called
when the cached data has
become outdated due to
inputs it depends on.

Putting it all
together!

fireblend.shinyapps.io/pokemon

In order to easily publish a Shiny app, its directory
structure must be formatted in the following way:

<app name>

/app.R

/DESCRIPTION

Or

<app name>

/ui.R

/server.R

/DESCRIPTION

Preparing a Shiny App

Sharing & Publishing Applications

Depending on your purpose, there are several ways to
share your Shiny apps online.

If the recipient is also running Shiny on RStudio, they can
pull your app directly from a hosted zip file, a Github
repo or a Github gist with the runUrl(...), runGithub(...)
and runGist(...) functions.

library(“shiny”)
runGitHub("shiny_talk", "fireblend", subdir = "pokemon/")

Alternatively, you can embedded your apps into a
webpage using an iframe, however they must be running
on a Shiny server.

You can:

- Setup your own: github.com/rstudio/shiny-server

- Use a free/paid service: shinyapps.io
(Free account includes hosting for 5 shiny apps)

Sharing & Publishing Applications

Thank you!
Questions?

